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Abstract 

  Voice recognition is a fundamental pathway to person individuation, although 

typically overshadowed by its visual counterpart, face recognition. There have been no 

large scale, parametric studies investigating voice recognition performance as a 

function of cognitive variables in concert with voice parameters. Using celebrity voice 

clips of varying lengths, 1-4 sec., paired with similar sounding, unfamiliar voice foils, the 

present study investigated three key voice parameters distinguishing targets from foils --

fundamental frequency, f0 (pitch), subharmonic-to-harmonic ratio, SHR (creakiness), 

and syllabic rate--in concert with the cognitive variables of voice familiarity and judged 

voice distinctiveness as they contributed to recognition accuracy at varying clip lengths. 

All the variables had robust effects in clips as short as 1 sec. Objective measures of 

distinctiveness, quantified by the distances of each target voice to that target’s sex-

based mean for each parameter, showed that sensitivity to distinctiveness increased 

with familiarity. This effect was most evident on foil trials; at clip lengths of one second 

and above, f0 and SHR distinctiveness showed no discernible effect on match trials. 

Speaking rate distinctiveness improved match accuracy, an effect only seen with high 

familiarity. Recognition accuracy improved with the number of parameters that differed 

by an amount larger than the median, both in the target-to-foil and target-to-mean voice 

comparisons. A linear regression model of these three voice parameters, clip length, 

and subjective measures of distinctiveness and familiarity accounted for 36.7% of the 

variance in recognition accuracy.  

Keywords: voice recognition, famous voices, voice parameters, voice distinctiveness 
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1. Introduction  

 Humans are social animals. As social animals it is vital that we distinguish 

other members of our species. The primary route to the identification of individuals 

is through face recognition and that route has been the subject of extensive 

research activity over the past 30 years. The most important secondary route to 

individuation has been through voice, which has received relatively little 

exploration. The present investigation explores the factors that allow a listener to 

determine the identity of a familiar speaker from a brief sample of speech. 

Although in an age of Caller ID and nighttime lighting, identification through voice 

has assumed a secondary status, it is still of great value for the blind or those with 

low vision or when a face is simply not in view. It has long occupied a prominent 

role in forensics. Prosopagnosics report that voices are invaluable in allowing them 

to identify familiar individuals (Facebook Prosopagnosic Group Entries, 2019). For 

instance, in a recent thread from August 23, 2019, user Michelle Rhiannon asked, 

“I was wondering if other people here find that they have really good voice 

recognition ability to compensate for their inability to recognize faces;” 75% of the 

41 replies confirmed reliance on voice recognition, with responses such as, “Yes, I 

often wait for or get people to speak to figure out who they are,” “That’s the only 

way I recognise people,” and “Yes, I can sometimes even recognize when people 

are relatives by the sound of their voices. And I often recognize voices after talking 

to a person once.”  

 But what are the factors that allow a listener to identify a known speaker 

solely from a brief sample of his or her voice?  Or to know that the voice is one 
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that they likely never (or rarely) previously encountered? The voice recognition 

literature is surprisingly lacking a systematic, parametric study of familiar voices.  

That is, of course, not to say that the voice recognition literature as a whole 

is lacking. There is a large body of voice-specific literature within the more general 

person recognition literature, which seeks to draw pertinent similarities, 

differences, and functional connections between voice recognition, face 

recognition, and identity-specific semantic memory. These studies discuss 

cognitive modeling of the person recognition system (e.g. Campanella & Belin, 

2007; Damjanovic, 2011; Stevenage et al., 2012) and the interactive effects of the 

face and voice modalities (e.g., Latinus et al., 2010; Schweinberger et al., 2010; 

Stevenage et al., 2014), as well as drawing pertinent distinctions between the two 

modalities (e.g. Hanley et al, 1998, Barsics, 2014; Biederman et al, 2018).  

A subset of this literature seeks to specifically model the voice pattern, 

using paradigms of voice discrimination of newly learned (i.e. “learned-to-familiar”) 

voices. These studies, well-reviewed by Maguinnness et al. (2018), provide 

behavioral and functional imaging evidence of the theory that voice patterns are 

stored as deviations from a prototypical voice, first proposed by Papcun et al. 

(1989). Recent empirical support for this theory comes from Latinus et al. (2013), 

who presented subjects sets of 64 generated voices (32 male, 32 female) that 

varied along three dimensions (fundamental frequency, formant dispersion, and 

harmonics-to-noise ratio) and found greater BOLD activity in the temporal voice 

area (TVA) elicited by the voices that deviated most from the average values, 

suggesting greater sensitivity to deviant features. Subjects’ ratings of 
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distinctiveness correlated with degree of deviance from the average. In a similar 

study of discriminating voices, Baumann and Belin (2010) found that voices closer 

in a two-dimensional sound space comprised of f0 and f1 were perceived as more 

subjectively similar. They conclude that these two dimensions alone comprise a 

reasonably sufficient representation of an acoustic discriminability space. Another 

theory, not exclusive to the prototype model, is that voice patterns are stored as an 

average of all heard instances of a voice. To test this, Fontaine et al (2017) 

hypothesized that subjects would be better at recognizing voice averages, i.e. 

combined vocal morphs of varying numbers of vowel sounds, than singular 

vowels. They discovered that averages of vowels, ranging from one to five vowel 

morphs, showed no recognition improvement in newly learned voices  However, 

they were better recognized in a famous voice recognition task, with roughly linear 

recognition improvements from ~60% to ~70% as the number of vowels within the 

morphed increased (and thus the morphs were more average sound 

representations).  

This highlights one of the key motivations for the present study; voice 

discrimination and voice recognition are dissociable abilities, as first argued by 

Van Lancker & Krieman (1987) and supported by multiple studies in the ensuing 

decades (see Stevenage, 2018 for review). Case studies of phonagnosia in 

particular (Xu et al, 2015; Roswandowitz et al, 2014), starkly highlight this double 

dissociation. While the voice discrimination literature is rich with parametric 

analyses, it focuses heavily on newly learned (in the lab), rigorously controlled 

voices, learned often one word at time. We posit that studies that examine 
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“learned-to-familiar” voices are not studying voice recognition at its best; they are 

studying voice discrimination at its best. Looking at the early stages of voice 

pattern formation, and testing perception of single words or vowel sounds, the 

learned-to-familiar literature provides an incomplete, albeit invaluable, 

understanding of the capabilities of natural familiar voice recognition. 

The familiar voice recognition literature studies a broader scope of 

naturalistic voice recognition often by using personally familiar voices, most 

common in the Forensic Voice literature (e.g. Ladefoged & Ladefoged, 1980; Rose 

& Duncan, 1995; Yarmey et al., 2001). These studies provide empirical evidence 

for effects of clip length and listening conditions (.e.g. whispering versus normal 

volume, verbal content), as well as a broad distinction between the recognizability 

of high versus low familiarity targets.  

These personally familiar voice studies, given the difficulties in procuring 

personally familiar voice clips for large numbers of subjects, understandably suffer 

both from low sample sizes and a minimal range of degrees of familiarity. The 

alternative is to use sets of celebrity voices. Early studies in this field (e.g. Van 

Lancker et al, 1985; Meudell et al., 1980) established empirical understanding of 

accuracy under differing lengths, set sizes, and conditions (such as forward vs. 

backward speech). Schweinberger at al. (1997) ran the most extensive famous 

voices study prior to the present date, looking at open sets of voices and using a 

precise step-wise method of playing voice samples until subjects could report 

familiarity with the voice. They demonstrated recognition improvements occurring 

with each .25 sec of clip length, as well as the effects of different retrieval cues 
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(added voice stimulus, target occupation, initials of name) to aid name-specific 

recognition. Using a similar paradigm of assessing a “familiarity signal” using open 

sets of celebrity targets, Bethmann et al. (2012) concluded that the anterior 

temporal lobes (ATL) and superior temporal sulcus (STS) play a fundamental role 

in familiar voice recognition by finding greater fMRI BOLD response in these 

regions. The differential activation of familiar versus unfamiliar voice stimuli was 

proportional to the subjects’ degree of familiarity with the familiar target.  

These open set paradigms are essential for studying a “familiarity signal,” 

the feeling of knowing that a voice is familiar but not necessarily being able to 

identify it. However, while they successfully probe the nature of such a signal, 

accounting for both degree of familiarity and length of exposure, they neglect to 

account for the acoustic voice features so rigorously measured in the unfamiliar 

and learned-to-familiar discrimination studies. In assessing the impressive scope 

of voice recognition literature, we were surprised to find that no studies have 

systematically compared familiar target voices and unfamiliar foil voices, in a way 

that bridges the discrimination-recognition gap.  

1.1. Present Study: Detecting the Familiar Voice Signal 

The present study assessed the accuracy of distinguishing celebrity voices, 

at various levels of familiarity, from the voices of foils that differed from the 

celebrity in several key parameters – fundamental frequency, subharmonic-to-

harmonic ratio, and speaking rate. These three voice features were chosen as 

they have been implicated in successful voice discrimination and remain relatively 
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constant over the variable vocal signal (Bauman & Belin, 2010; van Dommelen, 

1990; Skuk & Schweinberger, 2014; Krieman et al., 2017).  

One unique aspect of voice recognition when compared to the parallel 

person individuation route of face recognition is that while familiar faces can be 

readily recognized from an unrestricted set of thousands of faces, e.g., “any 

celebrity” (e.g., Hacker et al., 2018), the accuracy of recognition of voices declines 

precipitously as the number of possible voices increases beyond a handful (Legge 

et al., 1984; Biederman, et al., 2018; Xu et al., 2015; Shilowich & Biederman, 

2016). Furthermore, past studies utilizing familiar celebrity voices have mostly 

used unconstrained sets, with varying success rates as low as 10% (Meudell et 

al., 1980; Van Lancker et al., 1985; Schweinberger et al., 1997). By using a single 

celebrity target voice—that is under conditions of minimal uncertainty--we can 

observe familiar voice recognition within a range of accuracy sufficiently above 

floor and below ceiling so that the effects of individual distinguishing features 

between target and foil can be assessed. Using a simple match-not match 

paradigm, we assessed the role of: a) the three auditory parameters, b) clip length, 

and c) rated familiarity of the target, with accuracy in recognizing a celebrity voice 

against a foil that was matched for sex, age, and accent. 

2. Materials and Methods 

Subjects. 195 USC students were recruited through the USC Psychology 

Department subject pool and received credit in their psychology courses for their 

participation. The subjects participated over the internet, on the experimental 
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research website Testable.org. Participants filled out a questionnaire on their 

educational background, age, sex, handedness, history of brain trauma, self-

assessments of hearing ability, voice recognition ability, and years of exposure to 

American culture. An item asked the participants to imagine Barack Obama’s 

speaking voice and rate the vividness of the auditory image on a five-point scale. 

This was included in light of the prior findings (Xu et al, 2015; Shilowich & 

Biederman, 2016) revealing a relationship between an individual’s voice 

recognition ability and the vividness of their voice imagery. Barack Obama was 

chosen as the exemplar as his was the most familiar voice to all participants in 

prior studies at USC and the familiarity of his voice was similarly rated highly (an 

average familiarity of 4.75 out of 5) by the participants in the present study. 

2.1 Celebrity Voice Familiarity and Distinctiveness Pretest  

In the section preceding the voice recognition task, participants were 

provided a list of 100 celebrity headshots with their names printed below the 

headshot (Figure 2.1), to provide ratings of the Familiarity and Distinctiveness of 

each celebrity’s speaking voice to that participant. For each trait, ratings were 

made on a five-point sliding scale, and on both scales ‘1’ indicated they have not 

heard the person speak. The remaining scale values (2 to 5) for Familiarity went 

from “I’ve heard the target speak very infrequently” to “very frequently”. For the 

Distinctiveness scale, participants were asked to rate each celebrity’s voice on a 

scale from “very common voice” (2) to “very unique voice (5).”  
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Figure 2.1: Example of Familiarity and Distinctiveness Rating Survey. Subjects 
rated all 100 celebrity targets before beginning the experiment.  

 2.2 Voice Recognition Task 

The USC Voice Recognition Task (USC-VRT) can be accessed at 

https://www.testable.org/t/373f87d29. It consists of 100 trials, administered as two 

blocks of fifty trials each. After an instruction block and three practice trials with 

accuracy feedback, the testing blocks began, with no accuracy feedback. Each 

trial consisted of a two second fixation cross followed by a 2.5 second presentation 

of a celebrity headshot with name printed below it and the text “Is this celebrity the 

speaker?” printed above it. The celebrities were mostly entertainers but politicians 

and newscasters were also included. After the 2.5 second presentation, the 

headshot and texts remained on the screen while a sound clip played.  
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Figure 2.2: Sample Trial. After seeing the headshot and name for 2.5 seconds, a 
sound clip of either 1, 2, or 4 seconds played; the speaker in the clip was either 
the pictured celebrity or a similar sounding non-famous foil. Subjects chose either 
‘M’ for “Match” or ‘N’ for “Not Match.” 

The clip was either one, two, or four seconds long, and the voice either 

matched the prompted celebrity target or was the voice of a non-famous person. 

Both parameters, clip length and celebrity versus foil speaker, were selected 

randomly by the Testable (www.testable.org) function randomPick. The voice clips 

were retrieved by the author from television and radio interviews, with no semantic 

clues to the identity or profession of the speaker. Foil voice clips were obtained 

from the same media forms from non-celebrity speakers (e.g. local guests, 

journalists, etc.). The gender and race of the speakers were always matched 

between target and foil; accent and age were closely matched to the author’s best 

subjective judgment. Upon hearing the voice, participants selected either ‘M’ if the 

voice matched the celebrity target or ‘N’ if the voice did not match the target. 

Participants were instructed to respond as quickly as possible, even if the clip 
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hadn’t finished playing yet. There was no indication prior to each trial as to how 

long the clip was going to be.  

2.3 Sound Parameter Analysis 

The voice stimuli clips were analyzed using Voice Sauce (Shue et al., 2011) 

in MATLAB (Mathworks, 2012) to compare the voice stimuli parametrically. The 

top fifty most familiar (determined by mean familiarity rating) celebrity targets and 

their voice foils were chosen for the voice parameter analysis. These fifty 

celebrities were chosen in a post hoc analysis; the lesser-known targets were not 

highly familiar (rating >3) to any subject, and the focus of the post hoc analysis 

was on subjects’ performance on highly familiar trials. The mean familiarity rating 

for the unused trials was 1.75 (SD = .46); the high familiarity trials we used had a 

mean rating of 3.60 (SD = .48). The trials chosen for analysis had each case 

(three clip lengths of each identity, celeb vs foil speaker) represented by the full 

range of familiarity. Each of the voice sample’s full four second clips was used to 

extract mean f0 values using the Snack algorithm (Sjölander, 2004) and 

subharmonic-to-harmonic ratio using the SHR algorithm (Sun, 2002). Furthermore, 

a speaking speed analysis was performed by averaging the number of syllables 

spoken over the three different clip lengths. The syllable count was performed 

subjectively by the author. The correlation over two counts separated by seven 

months was r = .97. 

There were no discernible differences between the distributions of 

parametric values for the celebrity voices compared to the non-famous foil voices. 
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Table 2.1 shows the descriptive statistics of each parameter, grouped by sex and 

celebrity status.  

Table 2.1: 

Descriptive statistics of voice parameter distributions by sex and celebrity status 

  
  

F0 SHR  Syllables/sec 

Celebs Foils Celebs Foils Celebs Foils 

Male 
  

Mean 115.26 120.35 0.61 0.62 4.70 5.15 

SD 22.86 24.65 0.06 0.06 1.04 0.85 

  Skew 0.84 1.41 -0.49 -0.64 0.44 0.49 

Female 
  

Mean 187.87 190.82 0.60 0.60 5.40 4.52 

SD 22.61 21.86 0.05 0.09 0.56 0.72 

  Skew 0.47 0.36 -0.22 -0.33 0.54 -0.39 
 

2.4 Data analysis inclusion criteria 

195 individuals initiated the experiment, eight of whom did not complete it 

and were dropped from the analysis. Seven additional subjects were dropped for 

their insufficient immersion in American culture (<5 years). This was done because 

the subsequent analyses depended highly on familiarity with the targets and these 

seven subjects were familiar with less than 20% of the targets. Finally, four 

subjects were removed for questionable testing behavior; the accuracy of their 

performance was at chance and their reaction times were as fast as possible. After 

the removal of those 19 participants, 176 subjects remained. Congenital 

phonagnosic subject AN (Xu et al, 2015) also partook in the experiment; her 

results were not included in the aggregate main analyses but will be discussed.  
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2.4.1 Subject characteristics of included subjects 

The 176 subjects included in the analysis had a mean age of 20.3 (SD = 

3.0). 133 of the participants were female and 156 were right-handed. None 

reported any brain damage or neurological insult that would affect their hearing or 

voice perception.  

3. Results 

3.1. Subject Characteristic Effects 

The overall accuracy on the USC-VRT was 67.4% (SD = 8.4%), with 

chance being 50%. Neither sex nor handedness caused significant voice 

recognition differences. The mean male score was 68.1% (SD = 8.2%) and 

females averaged 67.3% (SD = 8.5%); t(174) = .535, ns. Right handed subjects 

averaged 67.1% (SD = 8.5%), left handed subjects averaged 70.1% (SD = 7.0%), 

t(174) = -1.50, ns. There was a modest positive correlation between age and 

recognition accuracy, r(175) = .29, p < .001, likely in part explained by a smaller, 

correlation between age and familiarity with the celebrity targets, r(175) = .16, p < 

.03. These two relationships can be seen in Figure 3.1.  
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Figure 3.1: Recognition accuracy (left) and mean familiarity ratings (right) as a 
function of subject age. Error bars are 1 SE for each group. 

There was an overall correlation with age and accuracy of .29 and age and 

familiarity of .16; as familiarity and accuracy were correlated (Fig. 3.1, right panel). 

The improvement in recognition performance with age is in large part due to higher 

familiarity of the older subjects with the target voices. This is not surprising as the 

celebrities were initially generated by phonagnosic AN (at the time a USC 

sophomore) six years prior to the running of the current study. N-Sizes of each bin 

in Fig. 3.1: 18 years = 14; 19 years = 50; 20 years = 54; 21 years = 37; 22+ years 

= 21. One-way ANOVAs between the age groupings were significant both for 

accuracy, F(4,171) = 9.62, p < .001, ηp
2 = .184, and familiarity ratings, F(4,171) = 

4.37, p < .002, ηp
2 = .093.  

The mean score for all familiar trials rated greater than 1 on a 5-point scale 

was 72.6% (SD = 8.4%). Seven subjects reported below average hearing, but 

performed at the mean on familiar trials (>1 rating), 69.8% (SD = 7.5%), in 

comparison with normal hearing subjects, t(174) < 1.00. Eleven subjects reported 

below average voice recognition abilities; their scores for familiar targets were 
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lower on average, 69.0% (SD = 7.2%), than those who reported average or better 

voice recognition abilities (72.8%, SD = 8.4%), but not significantly so, t(174) = 

1.48, n.s. There was a modest correlation, r(175) = .24, p < .002, between voice 

imagery vividness ratings and voice recognition performance. Twenty-two subjects 

rated Obama’s speaking voice as highly familiar but rated their vividness of 

imagining his voice as a three or less on the five-point scale. Consistent with the 

correlation between vividness of imagery and voice recognition accuracy found in 

Xu et al. (2015) and Shilowich & Biederman (2016), these subjects performed 

significantly worse on the recognition test (M = 68.9%, SD = 9.0%) than the 

subjects who gave a high vividness ratings (>3) to the auditory image of Obama’s 

voice (M = 73.1%, SD = 8.2%) - t(174)= 2.27, p < .025, d = .49.  

3.2 Main recognition results 

Familiarity - As documented in prior studies (Xu et al., 2015; Shilowich & 

Biederman, 2016) and as shown in Fig. 3.2, the higher the rated familiarity of a 

voice, the more accurately it was judged, F(4,668) = 90.6, p < .001, ηp
2 = .352. 

There was a high positive correlation between familiarity ratings and accuracy, r = 

.51, p <.001; the correlation with distinctiveness accuracy was lower but still highly 

significant, r = .49, p < .001. The correlation between Familiarity and 

Distinctiveness was very high, r = .86, p <.001. 

Clip Length – The longer the clip length, the higher the accuracy as shown 

in Figure 3.2; F(2,350) = 18.37, p < .001, ηp
2 = .095. For clips lengths of 1, 2, and 

4 seconds, matching accuracy was 64.3% (SD = 10.1%); 68.1% (SD = 10.9%), 



www.manaraa.com

RECOGNIZING VOICES  15 
 

 
 

and 69.3% (SD = 10.8%). The interaction between Length and Familiarity was not 

significant, F(8,864) < 1.00. 

 

Figure 3.2: Recognition accuracy by clip length and familiarity. Accuracy increased 
both with increasing clip length and familiarity. Error bars indicate 1 SE.  

Matching – There was a pronounced effect on recognition accuracy of 

whether the voice sample was the celebrity target or a non-famous voice with 

mean accuracy of 78.9% (SD = 9.7%) for positive match trials compared to a 

mean accuracy of 66.5% (SD = 14.3%) for negative matches. A repeated 

measures ANOVA showed that this difference was highly significant F(1,175) = 

15.93, p < .001, ηp
2 = .083.  
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Match case was significant at F(4,620) = 26.67, p < .001, ηp
2 = .147. There was no 

interaction between Clip Length and Match Case – F(2, 350) = .024, .n.s.; 

however, there was a three-way interaction between Clip Length, Familiarity 

Rating, and Match Case of the trial, shown in Figure 3.3. In Match trials, there was 

in improvement between one and two seconds but not two a four. In Foil trials, 

there was no differential performance between the clip lengths at Familiarity of 3 

and below; at levels 4 and 5 there is a linear additive relationship between 

Familiarity and Clip Length. The three-way interaction of Length, Familiarity, and 

Match was significant at F(8,1400) = 6.60, p < .001, ηp
2 = .036. 

 

Figure 3.3: Recognition accuracy by clip length, familiarity, and matching 
condition. Performance in matching cases is linear by familiarity, with an 
improvement in performance between 1 and 2 seconds. Below familiarity ratings of 
4, familiarity and clip length do not affect accuracy in foil trials (right panel). Error 
bars indicate 1 SE.  

Reaction Time – As shown in Fig. 3.4, the shorter the clip length, the 

shorter the mean correct RTs. In a 3x5 repeated measures ANOVA of Clip Length 

and Familiarity, the main effect of Clip Length was F(2, 350) = 232, p < .001, ηp
2 = 
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.570. The same ANOVA yielded a significant effect of familiarity, F(4, 700) = 3.40, 

p <.009, ηp
2 = .019. The interaction between clip length and familiarity ratings was 

also significant, F(8,1400) = 2.19, p < .05, ηp
2 = .012. A plausible interpretation of 

why longer clip lengths were associated with both higher accuracy and longer RTs 

is that subjects used the additional durations of the clips productively; the longer 

clip durations could provide additional distinctive voice characteristics that could 

inform their decision.  

 

Figure 3.4: Mean Correct RT across clip lengths and familiarity ratings. Error bars 
are 1 SE 

Match trials were significantly faster on average than foil trials; mean 

correct RT for match trials was 2,568 ms (SD = 544 ms); for foil trials, M = 2,642 

ms (SD = 576 ms). This difference is better understood in terms of the highly 

significant interaction between familiarity and target identity, F(4,700) = 21.34, p 

<.001, ηp
2 = .109. Shown in Figure 3.5 below, match trials were much faster in all 
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Familiarity levels was likely the result of a criterion shift; at 1 Familiarity, subjects 

exhibit a conservative bias. Knowing they cannot recognize the voice, they 

respond “Not Match,” quickly. In all familiar trials, Match trials are quicker likely 

because subjects answer as quickly as they accumulate enough positive evidence 

for a Match; Foil trials require more exhaustive processing to eliminate uncertainty. 

The interaction between Clip Length and Match Case was not significant – 

F(2,350) <1.00, n.s.  

 

Figure 3.5: The interaction between target identity and familiarity on correct RT. 
Subjects are quicker to successfully recognize a voice (Match) than to correctly 
reject a foil voice (Foil). At the highest familiarity rating of 5, the mean difference 
between these processes is 468 ms. Error bars are 1 SE.  

Phonagnosic Subject AN – AN’s accuracy on the task was low, scoring an 

average of 65.0% on all trials compared to 77.9% (SD = 14.2%) for the high 
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Foil

Match

2200

2400

2600

2800

3000

1 2 3 4 5

C
o

rr
ec

t 
R

T 
(m

s)

Familiarity Rating



www.manaraa.com

RECOGNIZING VOICES  19 
 

 
 

herself, generated the list of celebrities in Xu et al. (2015). The highest mean 

familiarity of the control subjects was 4.55 with a mean of 2.75. Further analysis 

revealed that she had a strong bias to respond that the voice sample was not a 

match to the target. She was 85% correct on not-match trials but only 42% correct 

on match trials. This is more than four SD’s below the mean of comparable trials 

by control subjects who had an 85.5% (SD = 10.2%) accuracy level on high 

familiarity, positive match trials. Figure 3.6 shows AN’s performance compared to 

the high familiarity trials of conservative subjects (n = 42), who, like AN, have a 

tendency to answer not-match more frequently, and liberal subjects, who are 

biased towards match responses. We see here that differences in criteria do not 

reflect differences in sensitivity. 

 

Figure 3.6: Phonagnosic subject AN compared to the high familiarity target trials of 
liberal subjects (who have negative criterion values, a bias towards answering 
“match”) and conservative subjects (who have positive criterion values, a bias 
towards answering “not match,” like AN).  

3.3 Signal Detection Analysis 

We analyzed the data as a signal detection task (discriminating the familiar 
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increased monotonically as rated familiarity increased as shown in Fig. 3.7; in a 

3x5 repeated measures ANOVA between the familiarity categories and clip length, 

the main effect of familiarity on d’ was significant at F(4,700) = 49.6, p < .001, ηp
2 = 

.221 Voice sample length did not have a significant effect, F(2,350) = 1.11, n.s. 

The interaction between familiarity and clip length on d’, shown in Figure 3.7, was 

significant at F(8, 1400) = 2.73, p < .005, ηp
2 = .015.  

 

Fig 3.7: d’s for matching a celebrity name (the target) against a sample voice as a 
function of the familiarity rating of the target’s voice and segment length. 
Sensitivity increased both with familiarity of the target voice and the length of voice 
sample. Error bars indicate 1 SE.  
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between each target voice and the mean parameter values for that target’s sex. 

These analyses were performed on the top 50 most familiar celebrities, defined by 

average familiarity rating; the analyses focused on the differences between low (2 

and 3 ratings) and high (4 and 5 ratings) familiarity, and the least familiar targets 

had no subjects rate them as highly familiar. 

3.4.1 Target to Foil Parametric Differences by Clip Length and Familiarity 

 We assessed the effects of each parameter with a 3-way repeated 

measured ANOVA; each parameter difference was binned into three groups – low, 

medium, and high difference between target and foil. Values for these categories 

are found in Table 3.1 below. Familiarity was binned into high familiarity (ratings of 

4 or 5) and low familiarity (ratings of 2 or 3). The three clip lengths of 1, 2, and 4 

seconds comprised the length category. All trials rated greater than a Familiarity 

level above 1 were included in the analysis 

Table 3.1:  

Parametric Bin Values, [Target – Foil].  

 BIN 

Parameter Low Medium High 

F0 [Δhertz]  
Mean (SD) 

< 16 
9.9 (4.3) 

16 - 32 
23.0 (5.2) 

> 32  
40.6 (6.3) 

SHR [Δratio]  
Mean (SD) 

< .045 
.023 (.01) 

.045 - .095 
.071 (.02) 

> .095 
.121 (.03) 

Speaking Rate [Δsyllables/sec] 
Mean (SD) 

< .85 
.35 (.23) 

.85 – 1.5 
1.1 (.20) 

> 1.5 
1.8 (.31) 

Each trial was binned according to low, medium, and high differences between 
target and foil. The value ranges are listed on top, each in the units corresponding 
to each parameter (listed next to the parameter as [Δ unit]; the bin means and 
standard deviations are below the ranges. 
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Figure 3.8 shows that increases in fundamental frequency difference 

between target and foil improved recognition, with a main effect of F(2,350) = 

90.31, p < .001, ηp
2 = .340. Both levels of familiarity showed improvement over the 

differences in f0, but the high familiar group showed greater sensitivity to the 

medium f0 category. The interaction between familiarity and f0 was significant, 

F(2,350) = 4.89, p < .008, ηp
2 = .027. There was also a significant interaction 

between clip length and f0 difference, F(4,700) = 4.56, p < .001, ηp
2 = .025 in that 

recognition only improved from two to four seconds, benefiting from the extra time. 

At the highest f0 difference level, all three lengths are comparable, indicating that 

one second suffices for recognition with a sizable f0 difference. The three way 

interaction between Length, Familiarity, and Fundamental Frequency was not 

significant, F(4,700) = 1.20, n.s. 
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Figure 3.8: Fundamental frequency difference between target and foil voice 
predicts recognition accuracy. High familiarity trials are in the top panel; low 
familiarity trials are below. The [Δf0] values for each bin are: Low, >16 Hz; 
Medium, 16-32 Hz; High, >32 Hz. Error bars are 1 SE.  

 The same three way repeated measures ANOVA was performed with 

subharmonic-to-harmonic ratio. As seen in Figure 3.9 below, there was a 

significant main effect of SHR on recognition performance, with higher levels of 

SHR difference resulting in higher recognition accuracy, F(2,350) = 44.08, p < 

.001, ηp
2 = .201.  
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Figure 3.9: Subharmonic-to-harmonic ratio difference between target and foil voice 
predicts recognition accuracy. High familiarity trials are on top, low familiarity trials 
are on bottom. The [ΔSHR] values for each bin are: Low, > .045; Medium, .045 - 
.095; High, >.095. Error bars are 1 SE.  
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most at the shortest clip length. The overall three-way interaction was not 

significant, F(4,700) = .246, n.s., but at the one second clip length the lower 

familiarity group only benefits from the highest SHR difference, whereas the higher 

familiarity trials show improvement at the medium level. As with fundamental 

frequency, the highest difference in SHR, trials in which the difference between 

target and foil SHR was > .095, sufficed for peak performance even at one second 

stimulus length. 

 Speaking rate difference between foil and target, measured in syllables per 

second, improved recognition accuracy, with a main effect of F(2,350) = 23.32, p < 

.001, ηp
2 = .118. The effect of familiarity on sensitivity to speaking rate fell short of 

significance, F(2,350) = 2.47, p < .086. Clip Length had a significant interaction 

with speaking rate, F(4,700) = 2.56, ηp
2 = .014, with subjects’ one second clip 

length trials less sensitive to the higher differences in rate, likely due to the limited 

range of syllables at that length. The three way interaction, shown in Figure 3.10, 

between Length, Familiarity, and Speaking Rate, was not significant – F(4,700) = 

<1.00, n.s.  
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Figure 3.10: The effect of Target minus Foil Speaking Rate Differences and Clip 
Length on recognition accuracy. The [ΔSyllables/sec] values for each bin are: Low, 
> .85; Medium, .85 – 1.5; High, > 1.5. Error bars are 1 SE. 

 In addition to the absolute difference in speaking rate, there was improved 

performance specifically when the target was the faster speaker. To assess these 
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Low (<1.2 syllables/sec difference) and ran a 2x2x2 repeated measures ANOVA 

with Speaking Rate Difference (High and Low), Familiarity (High ratings, 4-5, vs 

Low, 2-3) and Faster Speaker (Target vs Foil). The results are seen in Figure 3.1 

below. Recognition accuracy was higher when the target was the faster speaker, 

with a significant main effect of F(1,175) = 28.02, p < .001, ηp
2 = .139. The two-

way and three-way interactions were not significant. 

 

Figure 3.11: Effect of which speaker is faster. In all cases, accuracy is higher when 
the target is the faster speaker. At low familiarity, there is no sensitivity to speaking 
rate difference when the foil is the faster speaker. The Low difference group 
contains trials in which the difference was less than 1.2 syllables/sec; the High 
difference contains trials in which the difference was greater than 1.2 
syllables/sec. Error bars are 1 SE. 
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 Figure 3.12 shows the combined effects of Target-to-Foil differences in both 

subharmonic-to-harmonic ratio and fundamental frequency. In general, the larger 

the Target-to-Foil differences on either variable, the greater the accuracy, with still 

a higher level of accuracy achieved with larger differences on both variables. The 

interaction was significant, F(4,700) = 11.50, p < .001, ηp
2 = .062, with much of it 

attributable to ceiling effects and variable sensitivity to the parameter differences, 

such as the lack of an effect between Low and Medium differences in speaking 

rate. This benefit of having multiple differences on the speech parameters was 

witnessed for all parameter pairs. 

 

Figure 3.12: Interaction between f0 and SHR differences between target and foil 
voices. Error bars are 1 SE.  

 The interaction between speaking rate and SHR was similar to that for SHR 

and f0 differences, as shown in Figure 3.13 below. The repeated measures 

ANOVA for the interaction was significant, F(4,700) = 13.80, p < .001, ηp
2 = .135. 
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Similar to the interaction with f0, there were ceiling effects and differential 

sensitivity to various ranges of the variables.  

 

Figure 3.13: The effect of differences in SHR and speaking rate on accuracy. Error 
bars are 1 SE.  

 The interaction for the final parameter pair, fundamental frequency and 

speaking rate, was not significant F(4,700) = 1.66, n.s. At the highest levels of 

speaking rate difference, there was a monotonic improvement in recognition over 

the different [Δf0] categories. 

 

Figure 3.14: The effect of fundamental frequency and speaking rate. Error bars are 
1 SE.  
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3.4.3 A Rigorous Definition of Voice Distinctiveness  

 We examined each parameter by comparing the target voice to the mean 

voice (calculated from the average values of our stimulus set), as objective 

measures of distinctiveness. Separate means were calculated for each sex; male 

voices (n = 72) had a mean f0 of 117.8 Hz (SD = 23.7 Hz) and female voices (n = 

28) had a mean f0 of 186.4 Hz (SD = 25.0 Hz), both in the normal range of f0 

(Skuk & Schweinberger, 2014). Male voices had an average SHR of 0.611 (SD = 

0.056); females had an average SHR of 0.596 (SD = 0.071), also both in the 

normal range (Sun, 2002). Male voices averaged 4.7 syllables/second (SD = 1.0 

syllable/sec) and females averaged 5.3 syllables/sec (SD = 0.6 syllables/sec). We 

compared each target’s distance-to-foil to that that target’s distance-to-mean on 

each parameter. The bin values for the distances to the mean are seen in Table 

3.2 below. 

Table 3.2 

Parametric Bin Values, [Target Voice’s Value – Target’s Sex Mean Value]  

 BIN 

Parameter  Low Medium High 

F0 [Δ hertz]  

Mean (SD) 

< 8.4 

4.6 (2.6) 

8.4 - 20 

13.0 (3.5) 

> 20  

28 (5.6) 

SHR [Δ ratio]  

Mean (SD) 

< .025 

.012 (.01) 

.025 - .054 

.043 (.01) 

> .054 

.081 (.02) 

Speaking Rate [Δ syllables/sec]  

Mean (SD) 

< .59 

.34 (.19) 

.59 – 1.15 

.86 (.19) 

> 1.15 

1.44 (.33) 

Each trial was binned according to low, medium, and high differences between the 

target and mean for that target’s sex. The value ranges are listed on top, each in 
the units corresponding to each parameter (listed next to the parameter as [Δ unit]; 
the bin means and standard deviations are below the ranges. 
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Comparing the effects of target-foil and target-mean values for each parameter, 

only fundamental frequency yielded a significant interaction. As shown in Figure 

3.15, the interaction was a consequence that at lower levels of f0 differences 

between target and foil, subjects could better recognize those voices with larger f0 

distances from the mean f0. At the higher levels, ceiling effects limited the 

magnitude of this benefit of f0 distinctiveness. The 3x3 repeated measures 

ANOVA between the foil and the target f0 distances was significant, F(4,700) = 

5.46, p < .001, ηp
2 = .030. 

 

Figure 3.15: Interaction between fundamental frequency distance to foil and 
distance to mean (distinctiveness). At low difference to foil, more distinct target 
voices are better recognized. The [Δf0] values for each Target to Foil bin are: Low, 
>16 Hz; Medium, 16-32 Hz; High, >32 Hz. The [Δf0] values for each Target to 
Mean bin are: Low, >8.4 Hz; Medium, 8.4-20 Hz; High, >20 Hz. Error bars are 1 
SE. 

 The results for the three-way interactions between each parameter’s 

distance to mean, Familiarity, and Match Case. were somewhat surprising. We 

had expected that increasing distinctiveness of the parameters would affect both 

Low 

Med 

High

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

Low Medium High

P
ro

p
o

rt
io

n
 C

o
rr

ec
t

[Δf0] Target to Foil

[Δf0]
Target 

to Mean



www.manaraa.com

RECOGNIZING VOICES  32 
 

 
 

match and foil trials, but match recognition was only sensitive to syllable rate (as 

shown in Fig. 3.18 below). 

Looking at each of the distinctiveness parameters in turn, Fundamental 

Frequency had a significant main effect of improving recognition as the target’s f0 

became further from the mean, F(2,350) = 5.95, p < .003, ηp
2 = .034. As 

suggested above, distinctiveness did not affect match recognition at either 

familiarity level. There was a significant interaction between Familiarity and f0 

distance to mean, F(2,350) = 4.91, p < .008, ηp
2 = .028, with high Familiarity 

increasing sensitivity to distinctiveness on the foil trials. The interaction between 

Match Case and f0 distance to mean was not significant, F(2,350) = 1.10, n.s. 

However, the three way interaction, shown in Figure 3.16 was significant at 

F(2,350) = 6.12, p < .002, ηp
2 = .035. The increased foil performance at the low 

distinctiveness level for the low Familiarity trials is likely due to the criterion shift 

seen in the prior section; on low familiarity trials, subjects were more conservative 

(likely to say “not match”). This is enhanced if the expected voice had a non-

distinctive pitch. 
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Figure 3.16: Interaction between Fundamental Frequency distinctiveness (distance 
to mean voice), Familiarity, and Match Case. Match recognition (top) was not 
affected by distinctiveness of the target voice; correct Foil rejection (bottom) 
improved with increasing f0 distance when subjects were highly familiar with the 
target. Error bars are 1 SE. 

 The relationship with subharmonic-to-harmonic ratio distance to Familiarity 

and Match Case, shown in Figure 3.17, was similar to those with fundamental 

frequency. There was a significant interaction between SHR distance and Match 

Case, F(2,350) = 14.76, p < .001, ηp
2 = .082, wherein match recognition was 
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unaffected by differences in SHR distinctiveness but foil performance improved 

moderately (from medium to high) though the effect was a weak one; F(2,350) = 

3.15, p < .044, ηp
2 = .019. The interaction with familiarity was not significant, 

F(2,350) = 2.06, n.s. Highly familiar trials showed greater sensitivity to SHR 

distinctiveness in the foil trials, but the overall three-way interaction fell short of 

significance – F(2,350) = 2.45, p < .087.  

 

 

Figure 3.17: Interaction between SHR distinctiveness (distance to mean voice), 
Familiarity, and Match Case. Match recognition (top) was not affected by 
distinctiveness of the target voice; correct Foil rejection (bottom) improved with 
increasing SHR distance when subjects were highly familiar with the target. Error 
bars are 1 SE. 
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 The third distinctiveness parameter that was assessed was speaking rate, 

which had a main effect in the three-way ANOVA of F(2,350) = 28.27, p < .001, ηp
2 

= .154. Low Familiarity Speaking rate, had only a minimal effect on Low Familiarity 

trials, High Familiarity did (Figure 3.18). There were significant interactions with 

Speaking Rate and Match Case, F(2,350) = 6.31, p < .002, ηp
2 = .039, as well as 

Speaking Rate and Familiarity, F(2,350) = 6.18, p < .002, ηp
2 = .038. Both match 

recognition and foil rejection showed improvement in High Familiarity trials at the 

most distinct levels of Syllables/sec. The three-way interaction was not significant, 

F(2,350) = .422, n.s. 

 

Figure 3.18: Effect of Distinctiveness of Speaking Rate (in syllables per sec), 
Familiarity, and Match Case. Highly distinctive speaking rates improved both 
Match recognition and Foil rejection in High Familiarity trials. Error bars are 1 SE 

3.4.4. Two types of distinctiveness, three dimensions of voice features 

 Since we found pronounced effects of the target-to-foil difference and the 

target-to-mean difference, with interactions between the parameters, we next 

looked at how the parameters work in concert. For each type of distinctiveness (-

to-foil and -to-mean), we binned the parametric differences into “Small” and 

High

Low 

0.7

0.75

0.8

0.85

0.9

Low Med High

P
ro

p
o

rt
io

n
 C

o
rr

ec
t

[∆Syll/sec] Target to Mean

Match Trials

Familiarity

High

Low 

0.55

0.65

0.75

0.85

Low Med High

P
ro

p
o

rt
io

n
 C

o
rr

ec
t

[∆Syll/Sec] Target to Mean

Foil Trials

Familiarity



www.manaraa.com

RECOGNIZING VOICES  36 
 

 
 

“Large” by dividing the set of voices at the median value for each parameter. 

Figure 3.19 shows the improvements in recognition accuracy by the number of 

parameters that vary by a “Large” (greater than median) amount. With both forms 

of distinctiveness, there was marked improvement in recognition when the voices 

differed greatly on more than one dimension, with highest recognition accuracy on 

trials in which all three parameter differences exceeded the median. 

 

Figure 3.19: Recognition accuracy by number of parameters with large 
differences. All three voice parameters were binned into small and large 
differences (less than and greater than the median value for that parameter) within 
both measures of distinctiveness, target-to-foil (left) and target-to-mean (right). 
Recognition accuracy improved when the two voice values differed by a large 
amount on at least two parameters, and the highest accuracy occurred when all 
three parameters differed greatly. Error bars are 1 SE.  
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celebrity and foil voices 5) SHR difference between celebrity and foil voices 6) 

syllables per second difference between celebrity and foil voices 7) celebrity voice 

f0 absolute deviation from mean f0 8) celebrity voice SHR absolute deviation from 

mean SHR 9) celebrity voice speaking rate absolute deviation from mean 10) 

celebrity voice speaking rate raw deviation from the mean. As seen in the prior 

section, the differences between the three measured voice parameters for the 

celebrity versus foil are predictive of recognition accuracy. The last four variables 

in the regression were included as measures of objective measures of celebrity 

voice distinctiveness; each voice parameter was compared to the mean of the 

voice samples from this set. In the regression analyses, the celebrity-to-mean f0 

and SHR differences were the absolute values of the differences, the distance to 

that voice’s sex mean value. The absolute distance in speaking rate was only 

significant as a predictor of response time; however, the raw difference (celebrity 

speaking rate minus mean) proved highly predictive of accuracy. The raw 

differences for f0 and SHR did not have significant effects in any of the analyses.  

The first regression analysis was a step-wise linear regression of the 

aforementioned ten variables, including all levels of familiarity. The results of this 

analysis can be seen in Table 3.3. These step-wise regression results show each 

variable in order of its contribution to R-squared. Variables were dropped from the 

model if the significance of their contribution to a change in F was p > .100; this 

criterion left the absolute SHR and speaking rate differences between target and 

the mean out of the regression analysis in Table 3.3 The total R-Square was .367 

(adjusted R-square = .360), F(8, 725) = 52.49, p < .001, ηp
2 = .367.  
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Table 3.3:  

Regression Model of Familiar Voice Recognition Parameters 

Variable 
 

Unstandardized 
Beta 

Std. 
Error 

Standardized 
Beta 

t-
value Significance 

(Constant) .072 .078  .926 .355 

Familiarity 
Rating (1-5) 

.047 .004 .372 12.16 <.001*** 

Target to Foil 
[∆f0] 

.003 .000 .259 6.59 <.001*** 

Clip  
Length 

.022 .004 .146 4.93 <.001*** 

Distinctiveness 
Rating (1-5) 

.077 .019 .126 4.03 <.001*** 

Target to Foil 
[∆SHR] 

.472 .114 .136 4.12 <.001*** 

 Target to Foil 
[∆Syllables/sec] 

.032 .008 .122 3.78 <.001*** 

Target to mean  
∆Syllables/sec 

.019 .005 .110 3.48 <.001*** 

Target to Mean 
[∆f0] 

-.001 .000 -.081 -2.25 <.025** 

Clip length, familiarity rating, distinctiveness, and five different voice parameters 

(f0, SHR, and syllables/sec differences between target and foil; f0 and 
syllables/sec differences between target and mean) predict accuracy of a given 
trial at R = .606, R-Square = .367, adjusted R-Square = .360  

 The subsequent analysis looked at only high-familiarity trials (familiarity >3); 

the results are seen in Table 3.4 below. Familiarity was dropped as a measured 

variable (at the high levels the contribution was not significant at p < .05); all other 

variables’ positions in order of variance-explained were preserved, except for 

target to mean f0 difference, which was dropped for lack of statistical significance. 

The fit of the model was better in this high familiarity analysis – R = .668, R-

Square = .447, adjusted R-Square = .423, F(6, 143) = 19.23, p < .001, ηp
2 = .457.  
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Table 3.4:  

Regression Model of Highly Familiar Voice Recognition Parameters. 

Variable 
 

Unstandardized 
Beta 

Std. 
Error 

Standardized 
Beta 

t-
value Significance 

(Constant) 
 

.142 .129  1.097 .275 

Target to Foil 
[∆f0] 

.002 .001 .301 3.78 <.001*** 

 Clip Length 
 

.027 .007 .237 3.80 <.001*** 

Distinctiveness 
Rating (1-5) 

.104 .031 .230 3.42 .001*** 

Target to Foil 
[∆SHR] 

.612 .189 .227 3.23 .002** 

 Target to Foil 
[∆Syllables/sec] 

.035 .013 .181 2.68 .008** 

Target to mean  
∆Syllables/sec 

.021 .008 .167 2.48 .014** 

Clip length, distinctiveness, and four different voice parameters -- f0, SHR, and 

syllables/sec differences between target and foil; syllables/sec difference between 
target and mean -- predict accuracy of a given trial at R=.668, R-Square = .447, 
adjusted R-Square = .423.  

  

Figure 3.20: Model Fit of Linear Regression of Highly Familiar Voice Recognition. 
A linear regression model accounting for six variables – clip length, distinctiveness 
ratings, target-to-foil absolute difference in f0, SHR, and syllables per second, and 
target-to-mean raw difference in syllables per second – accounts for 44.7% of the 
variance of subjects’ accuracies recognizing highly familiar voices (rated 4 or 5 on 
the 5 point scale).  
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Figure 3.20 (above) shows a plot of the high familiarity linear regression 

model results. We plotted each trial’s model-predicted accuracy (calculated from 

the beta weights in Table 3.2) against its observed accuracy to visualize the 

goodness of fit. Figure 3.21 shows similar plots for trials of each clip length. The 

total R-Square for all clip lengths was .447; the regression had a better fit at longer 

clip lengths, increasing from 1 to 2 to 4 second stimulus lengths with respective R-

Squares of .376, 458, and .483. 

 

 

Figure 3.21: Model fit of linear regression model at each clip length. Using the 
same regression model as in Figure 3.20, we plotted each clip length individually. 
R-square improved with clip length. R-Square for one second clips was .376, for 
two second clips, .458, and for four second clips, .483. 
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The voice parameters themselves are correlated with each other, as seen in Table 3.5 

below. This table shows the zero-order correlations between the measured parameters 

of the regression models, as well as the two dependent variables - accuracy and 

correct RT - for high familiarity targets. 

Table 3.5: 

Pearson correlations between all regression parameters, accuracy, and RT. 

  Accuracy 
Correct 

RT 
Distinct 
Rating 

[∆f0] 
Target-
Mean 

[∆f0]  
Target-

Foil 

[∆SHR]  
Target-

Foil 

[SHR] 
Target-
Mean 

[∆Syll/se
c]  

Target-
Foil 

[∆Syll/sec] 
Target-
Mean 

∆Syll/sec  
Target-
Mean 

Accuracy  Corr (r) 1 -0.21 0.25 0.26 0.51 0.35 0.07 0.29 0.29 0.21 

  
Sig.(2-

tail)   0.009** 0.002*** 0.002** <.001*** <.001*** 0.388 <.001*** <.001*** 0.012* 

Correct RT  Corr (r) -0.21 1 -0.16 -0.16 -0.21 -0.23 <.001 -0.12 -0.09 -0.3 

  
Sig.(2-

tail) 0.009***   0.049* 0.046* 0.011* 0.004** 0.974 0.135 0.292 <.001*** 

Distinct   Corr (r) 0.25 -0.16 1 0.04 0.17 -0.01 -0.13 0.08 -0.01 -0.09 

 Rating 
Sig.(2-

tail) 0.002** 0.049*   0.668 0.038* 0.919 0.125 0.336 0.899 0.262 

[∆f0]   Corr (r) 0.26 -0.16 0.04 1 0.53 0.23 -0.03 0.31 0.32 0.21 
Target-
Mean 

Sig.(2-
tail) 0.002** 0.046* 0.668   <.001*** 0.005** 0.696 <.001*** <.001*** 0.008** 

[∆f0]   Corr (r) 0.51 -0.21 0.17 0.53 1 0.39 0.05 0.3 0.31 0.23 
 Target-
Foil 

Sig.(2-
tail) <.001*** 0.011* 0.038* <.001***   <.001*** 0.581 <.001*** <.001*** 0.006** 

[∆SHR}  Corr (r) 0.35 -0.23 -0.01 0.23 0.39 1 0.39 -0.01 0.03 -0.02 
 Target-
Foil 

Sig.(2-
tail) <.001*** 0.004** 0.919 0.005** <.001***   <.001*** 0.922 0.68 0.784 

[∆SHR]   Corr (r) 0.07 <.001 -0.13 -0.03 0.05 0.39 1 -0.31 0.01 0.06 
Target-
Mean  

Sig.(2-
tail) 0.388 0.974 0.125 0.696 0.581 <.001***   <.001*** 0.868 0.466 

[∆Syll/sec]   Corr (r) 0.29 -0.12 0.08 0.31 0.3 -0.01 -0.31 1 0.35 -0.04 

 Target-
Foil 

Sig.(2-
tail) 

<.001*** 0.135 0.336 <.001*** <.001*** 0.922 <.001*** 
 

<.001*** 0.595 

[∆Syll/sec]  Corr (r) 0.29 -0.09 -0.01 0.32 0.31 0.03 0.01 0.35 1 0.39 

Target-
Mean 

Sig.(2-
tail) 

<.001*** 0.292 0.899 <.001*** <.001*** 0.68 0.868 <.001*** 
 

<.001*** 

∆Syll/sec   
 Corr (r) 0.21 -0.3 -0.09 0.21 0.23 -0.02 0.06 -0.04 0.39 1 

 Target-
Mean 

Sig.(2-
tail) 

0.012* <.001*** 0.262 0.008** 0.006** 0.784 0.466 0.595 <.001*** 
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All voice parameters correlate with each other in at least one way (target-to-foil, 

target-to-mean, or both). Note that the three voice distinctiveness parameters – 

comparing each target’s measured f0, SHR, and syll/sec against the mean value – 

did not correlate with subjects’ reported distinctiveness ratings.  

3.6. Subjects’ Distinctiveness Ratings 

While the overall correlation between the mean distinctiveness rating for the 

trials and each of their distinctiveness measurements (seen in Table 3.6 above), 

subjects did show some sensitivity the speech parameters when we performed a 

repeated measures ANOVAs looking at each subject’s mean distinctiveness rating 

for each of the objective distinctiveness categories. Subjects’ subjective 

distinctiveness ratings increased linearly between the low and high target-to-mean 

distances for SHR, F(2,348) = 8.92, p < .001, ηp
2 = .049. When looking at f0 

distance to mean, the low and medium distances (>8.4 Hz and 8.4-20 Hz) showed 

similar distinctiveness ratings, with a marked increase at the high level (>20 Hz); , 

F(2,348) = 13.57, p < .001, ηp
2 = .072. Subjects showed no significant sensitivity to 

speaking rate in their distinctiveness ratings, which remained constant over the 

three speaking rate bins, F(2,348) = 1.52, n.s. These three relationships are 

represented in Figure 3.22 below.  
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Figure 3.22: Mean distinctiveness ratings of each parameter distinctiveness bin. 
There was a linear increase in ratings as SHR distance to mean increased; ratings 
increased only the highest f0 category; syllable rate showed no relationship with 
subjective ratings. Error bars are 1 SE.  

 Finally, we looked at the relationship between subjects’ familiarity ratings 

and their distinctiveness ratings; while the correlation between Familiarity and 

Distinctiveness was very high, r = .86, p <.001, we found successful differential 

usage of the scales by looking at performance at each distinctiveness rating for 

low familiarity and high familiarity trials. We binned Familiarity into Low (2 and 3 

ratings) and High (4 and 5 ratings) and Distinctiveness into >3, 4, and 5, and ran a 

2x3 repeated measures ANOVA on accuracy. As seen in Figure 3.23, accuracy 

improved linearly with increasing distinctiveness ratings, but only on high 

familiarity trials. At low familiarity, subjects’ assessments of distinctiveness were 

likely metacognitively unreliable. The main effects of higher recognition with higher 

ratings were both significant, with Familiarity at F(1, 175) = 63.96, p < .001, ηp
2 = 

f0

SHR

Syll/sec

4

4.1

4.2

4.3

Low Medium High

M
ea

n
 D

is
ti

n
ct

iv
en

es
s 

R
at

in
g

Target-Mean Parameter Bin

Parameter



www.manaraa.com

RECOGNIZING VOICES  44 
 

 
 

.268, and Distinctiveness at F(2,350) = 3.87, p < .022, ηp
2 = .022. The interaction 

was significant at F(2,350) = 3.55, p < .030, ηp
2 = .020. 

 

Figure 3.23: Performance by Distinctiveness rating and Familiarity. Subjects’ 
Distinctiveness ratings were predictive of accuracy, but only on highly familiar (>4 
rating) trials. Error bars are 1 SE.  

4. Discussion 

The present study systematically characterizes the nature of familiar voice 
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main effects of degree of familiarity and subjective rating of voice distinctiveness 
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all significantly contribute to familiar voice recognition, with improved sensitivity 

with higher familiarity.  

It is important to note that the selection of the voice parameters was made 

independently of the selection of the voice samples themselves, so they likely 

represent a somewhat unbiased sampling as to how these parameters vary from 

person to person. These voice parameters were chosen for their constancy over 

the three clip lengths. Multiple other parameters available within the VoiceSauce 

analysis program were investigated – multiple differences in harmonic peaks (e.g. 

H1-H2, H2-H4, etc.), Formants 1-4, Cepstral Peak Prominence, and Root Mean 

Square Energy. These have all been implicated in characterizing perceived 

similarity amongst voices (Keating et al., 2015; Kreiman et al., 2017), but 

unfortunately these parameters varied too greatly between clip lengths to be useful 

for our analyses. Of course, other parameters distinguish voices as well (e.g. 

Beckman, 1996; Krieman & Sidtis, 2011), but incorporating exhaustive parametric 

analysis of auditory features that vary by the phoneme was simply beyond the 

scope of the present study.  

 Looking at the main effects of Clip Length and Match Case, we found that 

positive matches occur within two seconds of voice stimulus; there was no 

improved performance between two and four seconds for any familiarity level. 

Conversely, subjects had as many false positives at moderately high familiarity (4) 

with two seconds of stimulus as they did at all lower levels of familiarity. At the 

highest familiarity, there was differential performance at all clip lengths up to four 

seconds. Miss rates were lower than false alarm rates at all lengths and levels of 
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familiarity; subjects have a liberal bias that increases not just with increasing 

familiarity by also with decreasing clip lengths. Under cases of higher uncertainty 

(minimal auditory stimulus), subjects perceive the most familiar voices in the 

ambiguity. Similar to the evolutionary explanation for pareidolia (e.g. Taubert et al., 

2017), in which people tend to find familiar patterns in randomness, when it comes 

to pattern recognition of any modality, missing a familiar pattern is much more 

costly than a false alarm. Granted, it is well documented that criterion can be 

shifted with various reward structures (Ackermann & Landy, 2015; Frithson et al, 

2018). However, given our absence any reward structure (we didn’t provide 

feedback of any kind) as well was reports of even higher rates false alarms (up to 

50% false alarm rate) of familiar voice recognition under conditions of greater 

uncertainty (Schweinberger et al., 1997; Lavner et al., 2000; Yarmey et al., 2001), 

it is likely an innate feature of the voice recognition process. 

 But, as we have found, false alarm rates vary as a function of the physical 

properties of the auditory stimuli. It well documented that familiar voice recognition 

and unfamiliar voice discrimination are separate, dissociable properties (Van 

Lancker & Krieman, 1989; Stevenage, 2018). Our own case study of AN (Xu et al, 

2015) contributed to this knowledge, demonstrating AN’s perfectly intact 

discrimination ability but severely poor familiar voice recognition ability. The 

literature argues that unfamiliar voice discrimination is a comparison of lower level 

features (Van Lancker & Krieman, 1989; Krieman & Sidtis, 2011) and that familiar 

voice recognition is a Gestalt-like pattern more predominantly influenced from top-

down processing (Krieman & Sidtis, 2011; Stevenage, 2018; Maguinness et al, 
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2019). This latter view seems reasonable given the performance on trials; match 

trials were fast and accurate, with subjects performing as well in less than a 

second than those hearing four full seconds of highly familiar voice stimulus, 

regardless of any discernable differences between the voices (measured in the 

distinctiveness parameters). Two or three syllables matching the expected voice 

pattern was sufficient for recognition.  

 However, the present study also shows the importance of lower level, 

quantifiable perceptual comparisons to the converse side of positive recognition, 

successful discrimination of familiarity itself. This is a unique and perhaps the most 

valuable contribution of the present study. While many voice studies show 

sensitivity to various voice parameters in discrimination of unfamiliar voices (Belin 

et al, 2004; Baumann & Belin, 2010; Garellek et al, 2016), this is the first known 

study to look at how voice parameters contribute to discrimination of a voice 

against a highly familiar, long term memory pattern.  

 As seen in the regression model, subjects are most sensitive to differences 

in fundamental frequency. From the repeated measures analysis of the different f0 

target-to-foil distances, differences of 32 Hz allow for successful foil performance, 

comparable to positive match performance, with just one second of stimulus. 

Allowing for two seconds of stimulus, subjects can discriminate differences as low 

as 16 Hz with the same ceiling performance rate. At the lowest levels of f0 

difference, less than 16 Hz, subjects hit the foil performance floor, with false alarm 

rates of 35%. Furthermore, looking at the interactions with the other two measured 
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variables, an f0 difference greater than 32 Hz is sufficient for at or nor ceiling 

performance regardless of the differences in the other two parameters.  

 However, at f0 differences less than 32 Hz, differences in subharmonic-to-

harmonic ratio help subjects to discriminate foils. When the SHR difference 

between target and foil is low, <.045, performance is at the floor; when it’s high, > 

.095, performance is close to ceiling, regardless of clip length. At low f0, SHR 

improves recognition at the highest level only, but when f0 differs at the medium 

(16-32 Hz) level, SHR differences between .045 and .095 bring performance to 

ceiling.  

 Speaking rate contributed the least, as per the regression model, but still in 

a significant way. There was monotonic improvement of recognition with 

increasing syllable rate at the two and four clips; subjects were not sensitive to the 

high syllabic differences (> 1.5 syllables/sec) at one seconds of stimulus. So, in 

the two and four second clips, speaking rate differences contributed additively to 

differences in the other parameters, but at one second lengths were simply less 

utilized in the discrimination process. Voices with particularly fast speaking rates 

(>1 syllable/sec more than average) showed improved recognition compared to 

the slower rates. This is likely a combination of the unique quality of a fast speaker 

(e.g. Mila Kunis) and the added benefit of extra syllables, each conveying more 

information of the other parameters’ differences as well.  

 Regarding the distinctiveness of each voice on each parameter, as 

measured by the distance to the sex-based mean, it was interesting to find that 
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distinctiveness of f0 or SHR did not affect positive matching. This perhaps speaks 

less to a diminished importance of distinctiveness than it does to the high 

performance of the matching process -- especially in this design, where the 

expected voice pattern is limited to a single identity. If we opened the possible set 

to four celebrities as in our prior voice studies (Xu et al., 2015; Shilowich & 

Biederman, 2016) or had an entirely open set like one used by Schweinberger et 

al. (1997), distinctiveness may play a much larger role. Also, clip lengths shorter 

than one second, reduced to one or two syllables, might reveal distinctiveness 

differences.  

 While match performance hit ceiling at all levels of distinctiveness, even 

within 8.4 Hz f0 difference or .025 SHR difference from the mean voice, there was 

noticeable differential performance on the foil trials. This was most evident at the 

highest levels, with voices greater than 20 Hz f0 difference, 054 SHR, or 1.15 

syllables/sec from the mean showing marked improvement in recognition 

compared to more average voices. This sensitivity to distinctiveness on these 

parameters was noticeably absent on less familiar trials (those rated 2 or 3).  

 This relationship between familiarity and distinctiveness was evident in how 

subjects subjectively rated the distinctiveness of voices. At low levels of familiarity, 

there was no correlation between distinctiveness ratings and performance. 

However, at the higher levels of familiarity (>3), the accuracy of subjects on trials 

of different distinctiveness ratings showed significant within-subject improvement 

as the target was rated as being more subjectively distinct. Looking at the 

relationship between the objective distinctiveness parameters and the 
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distinctiveness ratings, voice more distinct in f0 and SHR were rated as more 

subjectively distinct. The difference was subtle, with a mean of 4.25 distinctiveness 

rating of the most objectively distinct voices versus a mean of 4.1 for the lowest 

bins, but significant.  

 This is partly due to the fact that subjective distinctiveness ratings 

incorporate a multitude of features not captured by our measures, and maybe not 

capturable by any objective measure. As we saw, distinctiveness and familiarity 

are highly correlated, r = .86. While one explanation is that more distinct voices 

are more memorable and therefore will be rated as more familiar for a given level 

of exposure, it is more likely the case that familiarity itself causes an increase in 

subjective distinctiveness. Simply consider how distinct two identical twins seem 

when you first meet them versus having known them for years. The objective 

differences haven’t changed, but you’ve learned a multitude of differentiating cues, 

some of which may even be unconscious to you. This is perhaps why 

distinctiveness ratings contributed significantly to the explanation of variance 

within the regression and the objective measures fell short; the subjective 

distinctiveness ratings are a metacognitive proxy for many parameters.  

5. Conclusion 

 By studying familiar voice recognition using conversational clips of celebrity 

voices, paired against similarly sounding nonfamous foils, we could successfully 

explain 45% of the variance of familiar voice recognition performance using just six 

variables – 4 voice difference parameters (3 comparisons to the foil voice – f0, 
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SHR, and syllables/sec – and one distinctiveness measure – speech rate of the 

famous target), Clip Length, and a subjective rating of distinctiveness. By 

comparing trials of differing familiarity ratings, we found that sensitivity to these 

parameters increases with familiarity, helping to bridging the gap between 

unfamiliar voice discrimination and familiar voice recognition.  
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